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Abstract: This paper introduces a generic distributed prognostic health management
(PHM) architecture with specific application to the electrical power systems domain.
Current state-of-the-art PHM systems are mostly centralized in nature, where all the
processing is reliant on a single processor. This can lead to loss of functionality in case of
a crash of the central processor or monitor. Furthermore, with increases in the volume of
sensor data as well as the complexity of algorithms, traditional centralized systems
become unsuitable for successful deployment, and efficient distributed architectures are
required. A distributed architecture though, is not effective unless there is an algorithmic
framework to take advantage of its unique abilities. The health management paradigm
envisaged here incorporates a heterogeneous set of system components monitored by a
varied suite of sensors and a particle filtering (PF) framework that has the power and the
flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic
and prognostic tasks are formulated as a particle filtering problem in order to explicitly
represent and manage uncertainties; however, typically the complexity of the prognostic
routine is higher than the computational power of one computational element ( CE).
Individual CEs run diagnostic routines until the system variable being monitored crosses
beyond a nominal threshold, upon which it coordinates with other networked CEs to run
the prognostic routine in a distributed fashion. Implementation results from a network of
distributed embedded devices monitoring a prototypical aircraft electrical power system
are presented, where the CEs are Sun Microsystems Small Programmable Object
Technology (SPOT) devices.
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I. INTRODUCTION
Distributed diagnostics and prognostics is the next step in the evolution of health
management systems as expectations of health update frequency, system coverage and
prediction accuracy increase. The most common architecture for health management
systems — due to ease of development — is centralized i.e., a central processing device



collects data from sensors and processes them, while executing various diagnostic and
prognostic algorithms. However, such a system architecture, where all or most of the
processing is reliant on a single processor, is prone to various problems; the most serious
being vulnerability to complete loss of functionality in case of a crash of the central
computing element. Furthermore, with increase in amount of sensor data as well as the
complexity of algorithms, traditional centralized systems become unsuitable for
successful deployment and efficient distributed architectures are required.

A distributed architecture though, is not effective unless there is an algorithmic
framework to take advantage of its unique abilities. The health management paradigm
envisaged here incorporates a heterogeneous set of system components monitored by a
varied suite of sensors and a particle filtering (PF) framework that has the power and the
flexibility to adapt to the different diagnostic and prognostic needs. The application
domain for this research is an experimental setup simulating a prototypical aircraft
electrical power system. The system components under test include power electronic
devices and lithium-ion batteries. Sun Microsystems Small Programmable Object
Technology (SPOT) devices are used for embedded sensing as well as computing. Each
system component is monitored by a single Sun SPOT device that takes voltage, current
and temperature measurements as appropriate and runs the diagnostic routine on the
collected data. Once a fault is detected the SPOT device in question switches over to the
prognostic routine where it enlists the help of other available SPOT devices to set up a
distributed wireless network in order to share the prognostic computational load.

Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in
order to explicitly represent and manage the uncertainties inherent to the PHM domain.
Such uncertainties could result from various sources like insufficient system model
fidelity, sensor noise or unanticipated operating conditions. The diagnostic system model
is a simple low order formulation that allows the limited computation power of a single
SPOT device to track the measured variable indicative of component health and trigger
the prognostic routine when certain predetermined thresholds are crossed. The prognostic
model is more complex in order to handle the increased uncertainty of health prediction
and hence load sharing over the distributed network is required to obtain real-time results.
The cooperating SPOT devices multi-task to carry out individual diagnostic duties along
with distributed prognostic tasks and maximize the overall health management system
efficiency. Thus, the overall system involves complex run-time scheduling and decision-
making. The results discuss the prediction accuracy and precision of the prognostic
routine and the computational performance gains of the distributed architecture over
classical centralized schemes.

II. BACKGROUND
Research into systems health management has traditionally been spearheaded by the
manufacturing, power generation and military systems community. Rotating machinery
were the first implementation platforms for these technologies, since downtime or
breakdown incurred significant costs, both in terms of economic viability and resource
availability. Forays into the world of electrical and electronic devices are more recent.
Even so, most of the body of work available addresses the issue of diagnostics — fault
detection, identification and isolation. The field of prognostics is still very much nascent,



although with the advent of the Condition-based Maintenance (CBM) paradigm, the
emphasis on failure prediction and prevention has increased.

Early efforts in machinery diagnostics were mostly data-driven techniques applied to
vibration data [1], [2]. Integrated diagnostics and prognostics approaches have emerged
in recent years. In [3] the authors discuss such a methodology using statistical prognostic
models. They also emphasize the need for a physics-of-failure based approach to improve
the reliability of prognostics. A reasoning engine for distributed multi-algorithm
diagnostics and prognostics is presented in [4]. Distributed data mining tools like DAME
[5] and BROADEN [6] have also been developed for aircraft engine health management
applications.

Looking at the health management problem from the systems perspective, the authors in
[7] present a distributed prognostics architecture where tasks, like identifying the
different system modules and determining where they fit into a given system using
prognostics, are distributed at the algorithm level. A distributed network of smart sensor
elements integrated using a knowledge-driven environment is presented in [8], which
participates in a hierarchy of health determination at sensor, process, and system levels. A
hardware multi-cellular sensing and communication network (a smart "skin") for health
management of "ageless" aerospace vehicles (AAVs) is presented in [9]. The objective is
to detect and self-heal from impacts caused by projectiles like micro-meteoroids or space
debris.

From the algorithms perspective, some prognostic techniques — such as particle filters —
have been investigated from a distributed implementation context. Three different
distributed implementations for particle filtering are presented in [10]. A parallel particle
filter implementation on a shared-memory multiprocessor cluster is discussed in [11].
The issue of resampling in distributed particle filter architectures has been discussed in
[ 12]. Distributed particle filters for sensor networks [ 13] and tracking applications [ 14]
have also been explored in recent times. Communication issues are most often the highest
contributor to resource management costs for generic distributed networks. Specifically,
for wireless networks communication overhead can be higher by orders of magnitude as
compared to other factors. As a mitigation strategy, an approximate dynamic
programming approach that integrates the value of information and the cost of
transmitting data over a rolling time horizon is presented in [15]. However, the above
technique is specific to the context of object tracking with a distributed sensor network
and may not be easily extended to other domains. In [ 16] the authors investigate the role
of network topology in improving communication overheads. The problem of minimizing
communication in general distributed systems is considered in a discrete-event formalism
in [ 17], where the system is modeled as a finite-state automaton.

From the literature review presented above, it can be inferred that there are several
challenges to designing an efficient distributed health management architecture. It must
be flexible enough to be able to monitor a variety of subsystems using heterogeneous
implementation platforms while balancing the trade-offs among computational
performance, resource requirements and communication overheads. The following
sections describe a distributed PHM architecture that addresses these issues while using



particle filters as the underlying algorithm. A subset of this work concerning only the
distributed prognostics aspect was presented at the International Conference on
Prognostics and Health Management 2008 (PHM 2008) [18].

III. DISTRIBUTED PHM ARCHITECTURE
At the heart of the distributed PHM architecture is a network of smart sensor devices.
These devices monitor the health of various subsystems or modules i.e., they perform
diagnostics operations and trigger prognostics operations based on user defined
thresholds and rules. An example of such a distributed prognostics system is shown in
Figure 1. The sensor devices which we call computing elements (CEs) consist of a sensor
or a set of sensors and a communication device i.e., a wireless transreceiver or wired
communication capabilities besides an embedded processing element. In this paper we
focus on wirelessly connected devices for enhanced flexibility. However, for many
systems, wired connections may be preferred in order to overcome communication
overheads associated with wireless systems.

Figure 1 — Overview of distributed prognostics system architecture. Note that all the CEs
may not have wireless connectivity. (Adapted from Figure 1 in [18]).

There are two main operating modes for a CE: diagnostics and prognostics [18]. A CE
runs in the default mode of diagnostics where it monitors a given sub-system or
component through a low weight diagnostic algorithm. During this monitoring if a CE
detects a critical condition, it raises a flag. Depending on the current state (i.e.,
availability of resources) it either switches to prognostics mode or informs the base
station of the prognostic task. Thus, in the prognostics mode it is not necessary that all
CEs collaborate; some of them may lack enough computing power to support the
additional new task. Note that the diagnostics operations continue in the prognostics



mode. To ensure that a participating CE can support such multi-tasking efficiently the
prognostics algorithms need to be distributed efficiently.

• All CEs running
Diagnostic routines

0 • CE reports fault
• Prognostics mode triggered

• Base Station sets up
C Prognostics network

• Participating CEs continue
to run Diagnostics

• Fault reporting CE runs Prognostics
• Participating CEs run Diagnostics &Prognostics
• Remaining CEs continueto run Diagnostics

Figure 2 - Flow diagram for diagnostics and prognostics operations in the distributed
architecture.

In many cases the sensor capabilities of the CEs may not be utilized, i.e., they could act
as monitors for the rest of the system - schedule tasks, detect failures and initiate
recovery, provide access to resources such as an external database etc. These CEs are
specially designated as base stations. The base station is also, typically, connected to a
more power computing resource such as a laptop which aids in collection and storage of
system data.

Figure 2 shows, in detail, the typical execution flow in our health management
architecture. As mentioned earlier, each CE monitors different components or subsystems
such as battery health, actuator faults, health of electronic components and so on. It can
also be responsible for diagnostic monitoring of a sub-system comprising of multiple
components. In most cases the raw data collected is refined using diagnostics algorithms
and only a summary is reported to the base station. But, in many cases, when the CE does
not have enough computing power - for example in order to support heavy sampling rate
of data collection - it can periodically send packets of raw data which may be used for
offline analysis. Such a case is illustrated in our implemented architecture.



The base station monitors all the remaining CEs and coordinates tasks. The base station
also maintains information regarding CE resource availability. Note that during
prognostics, it is not necessary that the base station will coordinate all the tasks and
another local leader/server may be chosen. The CEs involved in the prognostics operation
would perform more efficiently if they are physically near to each other in a wireless
environment and hence it is imperative that the base station is physically near to the rest
of the CEs as well. Thus, in case the base station is far away from the collaborating CEs,
a different leader is selected.

Implemented Architecture: In the system considered in this paper, two free ranging
CEs (CE1 and CE2) are involved in addition to the base station, which also performs
diagnostics on battery health data from an offline source. This scenario reflects the case
when a base station has to aid some other CE in computation and illustrates the heavy
multi-tasking involved in such a health management architecture. After startup of the
system, during initialization, the base station communicates with remote CEs to gather
information regarding available resources. Individual diagnostics routines are initiated by
all the devices: CE, monitors temperature of an IGBT, CE Z monitors temperature of a set
of Lithium ion batteries and the base station runs offline diagnostics for battery based on
current and voltage information. Further details of the diagnostic system are provided in
Section V.

In our system, prognostics is triggered by the base station after it detects an anomaly.
Based on resource information, it selects one of the CEs (say CE 1 ) to collaborate in
prognostics on battery health data. It allocates task share to this CE and starts as well as
acts as a leader for the prognostics routine. CE1 now performs the prognostics sub-task in
addition to its diagnostics task. The remaining free ranging CE (CE2) continues its
diagnostic operation. The base station now performs only its share of the prognostics task
and scheduling and oversight of the prognostics task besides collection of diagnostics
data from the two CEs. Once the required maintenance has been performed and the
prognostics task is over the base station informs CE1 , which then returns to its
diagnostics mode.

The Implementation Platform: The basic computational element of our implementation
platform is the Sun Microsystems SPOT device. A free range Sun SPOT is a small,
wireless, battery powered experimental platform built by stacking a Sun SPOT processor
board with a sensor board and battery as shown in Figure 3. The smaller base station Sun
SPOT consists of just the processor board in a plastic housing. In terms of processing
power, each Sun SPOT has a 180MHz 32-bit ARM920T core processor with 512K RAM
and 4M Flash. The Sun SPOTs communicate using radio channels. The processor board
has a 2.4GHz radio with an integrated antenna on the board. The radio is a TI CC2420
(formerly ChipCon) and is IEEE 802.15.4 compliant. Each processor board has a USB
interface (used to connect to a PC). Each free ranging SPOT runs off a 3.7 V
rechargeable, 750 mAh Lithium-ion battery, while power management is carried out
using a Atmel Atmega88 microcontroller. The base station SPOT does not have a battery,
instead drawing power via the USB connection to the host PC. In our implementation, the
free ranging SPOT act as CE while the SPOT base station acts as the default base station.



Figure 3 — Anatomy of a free ranging Sun SPOT device (courtesy of
www. sunspotworld. com ) .

IV. PARTICLE FILTERS
In terms of the software program running on the above described architecture, we focus
on a single-class of algorithms — particle filters. PF methods [ 19] are essentially Bayesian
learning schemes that model the state equations as a first order Markov process with the
outputs being conditionally independent. This has the advantage of making the next state
prediction dependent only on the current state and the current measurement, which
translates to lower memory and communication requirements than a Monte Carlo
approach. PF methods are capable of identifying model parameters simultaneously with
state estimation, thus tuning the system model to fault progression, making it superior to
Kalman filters for health management approaches.

Figure 4 — Particle filter flow chart.



PFs approximates the state probability distribution (pdf) with a set of particles, xk,

representing sampled values from the unknown state space, and their associated weights,
wk, denoting discrete probability masses. Figure 4 shows a simplified flow chart for the
PF algorithm. The particles are generated and recursively updated in two steps for each
iteration of the filter — an intermediate estimate is generated from a stochastic nonlinear
process model that describes the evolution in time of the system under analysis, which is
then updated using the likelihood of the current measurement, zk, to produce the posterior
state pdf. As the filter iterates and gets closer to the true state value, most of the particles
weight degenerate, i.e. become negligible. Then, in order to prevent wasting
computational resources on unimportant particles, resampling is carried out to generate a
new population of particles concentrated around the more important ones of the old
population. Details about this methodology are provided in [18].

V. DIAGNOSTICS
The diagnostic routine can be broken down into two parts — sensing and data analysis.
For the prototypical aircraft electrical power system (EPS) under consideration, we look
at a set of heterogeneous components, namely power semiconductor devices and
batteries. Power semiconductors like Insulated-Gate Bipolar Transistor (IGBT) form the
core of most electric power systems because of their high efficiency and fast switching
speeds. However, due to high thermal and electrical stresses IGBTs undergo accelerated
aging as compared to other electronic components that are part of the electrical power
system. On aircrafts, batteries are mostly used for starting the engines and supply back up
power to electrical loads (e.g. landing gear actuation, air conditioning etc.), while being
charged as the engines run. However, it is still important to know the state-of-charge
(SOC) and state-of-life (SOL) of the batteries for reliable operation, since their failure
could impair operation of crucial systems leading to catastrophic consequences.
Moreover, with the increasing role of electric UAVs in the future, batteries are going to
be even more critical to overall system functionality.

As mentioned before our set up consists of 2 SPOTs connected over a wireless network
to a base station that is linked to the host PC. One of these SPOTs monitors the
temperature of an IGBT as it undergoes repeated switching at elevated temperatures until
loss of functionality due to thermal runaway or latch-up. The other SPOT looks at the
temperature of a Lithium-ion rechargeable battery as it is repeatedly charged and
discharged until it reaches a predefined end-of-life (EOL) capacity threshold (30%
capacity fade). Figure 5 shows the temperature time series data collected by the SPOTs
from both the IGBT and the Lithium-ion battery. Since run-to-failure experiments with
these EPS components take considerable amount of time (more than the battery life of the
free ranging SPOTs), pre-recorded battery aging data is fed to the monitoring SPOTs
through the base station in order to show proof of concept of the integrated PF-based
diagnostics-prognostics framework. The state variables of interest are the battery
capacity, the electrolyte resistance (RE) and the charge transfer resistance (RCT) [18].
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Figure 5 — Temperature data collected from EPS components (a) IGBT, and (b) battery.

For diagnostics on offline battery aging data, the base station runs a lightweight version
of the particle filter with only 20 particles, so as to fit within the computational and
memory resources of a single CE. Using a low number of particles somewhat diminishes
the ability of the PF to handle uncertainties, but since diagnostics is only concerned with
tracking performance (1 step ahead prediction), the PF output is acceptable, as shown in
Figure 6 (a) and (b). The tracking error for the internal impedance variables does not
exceed 1milliohm while that for capacity drops to 10 mAh within 3 iterations. The
diagnostic routine is run until the battery capacity as estimated by the base station crosses
the 5% fade threshold, shown in Figure 6 (b), after which the prognostic routine is
triggered. The state estimates at this trigger point serve as the starting population for the
prognostics PF algorithm.
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Figure 6 — PF state tracking for diagnostics and state prediction during prognostics from
32 weeks onward for - (a) internal impedances RE, RCT, and (b) battery capacity.
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VI. PROGNOSTICS
For the prognostic routine we need to make long-term predictions over several weeks and
hence, we need more particles in the PF implementation to manage the uncertainty
bounds. However, when the number of particles is stepped up to 100, the computational
and memory resources available in a single CE is insufficient to handle the load. The
base station then communicates with one of the CEs requesting help to set up a
distributed computational network. These 2 nodes then execute the prognostic PF while
working with 50 particles each. The distributed architecture takes advantage of the fact
that there are no data dependencies during model-based particle propagation and the
weight updates. These portions of the PF algorithm as easily parallelized, while only the
resampling part is serial in nature. In our setup, the base station performs the resampling
and particle routing, as well as overall control. More details about the execution steps can
be found in [18].

Figure 6 (a) and (b) show the predicted trajectories of R E, RcT and battery capacity from
32 weeks onward. Although, by this point we have seen only half the life of the battery,
the predictions are fairly accurate due to the ability of the PF to adapt the system aging
model during the diagnostic routine. Furthermore, the PF does not simply provide the
mean prediction trajectories, but also the predicted state pdf. This distribution may be
compared against the EOL threshold (30% capacity fade, i.e. a battery capacity of 0.7
Ah) to generate the remaining useful life (RUL) pdf. Figure 7 shows how the PF
prognosis improves in both accuracy and precision (narrowness of the pdf) from 32
weeks to 48 weeks as more data is made available before prediction.
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Figure 7 — Distributed PF prediction at 32 and 48 weeks.



VII. COMPUTATIONAL PERFORMANCE
The execution time profiles (averaged over multiple separate executions of the whole
system) for prediction after 32 weeks and prediction after 48 weeks are shown in Figure
8. An average was taken since the execution time varies — within a margin of 10-15 ms —
mainly based on the wireless communication time which is dependent on the distance
between the CEs. The comparison shows the significant decrease in execution time when
two CEs are used for prognostics, which is expected since the computation intensive load
is now distributed. The inclusion of diagnostics task adds a minor overhead to the
performance.

Execution Time Comparison for Prognostics only
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Figure 8 — Execution time comparison for health management system.

The memory usage of the CE1 , CE2 and the base station are 29 KB, 28 KB and 25 KB
respectively. Note that the CEs i.e., remote SPOTs execute using a virtual machine which
contributes to additional memory use. The static program memory usage of one of the
SPOT devices is illustrated in Figure 9. The memory usage reflects that most of the
application memory is unused and further multi-tasking is possible thereby facilitating
the scope for design of more complex health management system.

Memory Usage for CE 1

Figure 9 — Typical memory usage profile for a SPOT device.



VIII. CONCLUSION
This paper presents a distributed system health management architecture that handles
diagnostics as well as prognostics operations in a collaborative manner. It builds on
recent advances in smart sensor devices to distribute macro and micro level tasks, for
better performance and resource utilization. The distributed prognostics part was
highlighted in [18]. In this paper, a proof-of-concept demonstration of the architecture
with the diagnostics workload thoroughly integrated has been presented which resulted in
a heavily multi-tasking system. Experiments with monitoring a small heterogeneous set
of EPS components to evaluate the effects on performance and resource (memory)
utilization have been presented. Analysis of the results show that such a distributed
architecture results in a highly efficient system (low execution time and static memory
usage) that is capable of supporting complex functionalities like PF based diagnostics and
prognostics, while providing high throughput rate.

The main focus of this paper has been architectural issues. However, new algorithmic
modifications are also required to scale this system for real-time practical applications.
Such algorithm explorations, besides investigation of more complex systems, are
directions for future work. More analysis of architectural features such as communication
protocols, power management, sophisticated partitioning and scheduling of tasks etc. are
also important future research objectives.
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